If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-40x+54=0
a = 6; b = -40; c = +54;
Δ = b2-4ac
Δ = -402-4·6·54
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{19}}{2*6}=\frac{40-4\sqrt{19}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{19}}{2*6}=\frac{40+4\sqrt{19}}{12} $
| 4(3x+5)=-42+50 | | -9x+5x-5=-1 | | 2(3x+9)=-29+5 | | 6x+12+2x-26+5x+25=180 | | 29k+16-1=15 | | 3(2x+2)−x−2=39 | | 7x+4−5x+9=15 | | 12x+2=20+14x-6 | | 2y+3=4y+2. | | 1/3y+5=2/3y+3 | | 7(5x+4)=14-8x | | 7x-(-5)=-30 | | 43=5x-26=2x-1 | | 21+3x=22 | | 2(4y−4)=40 | | 10y+5×=650 | | h+6=-3 | | 4x-6+3x=16 | | -2(3x+1=26 | | 5,6x+-0,5=1,6+8,1x | | b=7/4-9 | | 2x+3x-3=3x+11 | | 2(2x-2)=13 | | x/4=19=-13 | | 25=8x=1-4x | | |2x+5|=3x−20 | | 7x+21+9x=4 | | 13+23m=23m-23 | | -3(4r-1)=27 | | 2(8x+3x)+49=11 | | 1/2=12x9/2 | | 3(7+x)=22 |